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Abstract. In this work, we address the semantic segmentation task with
the purpose of allowing visually impaired people to comprehend their en-
vironments. To this end, we study and leverage convolutional networks
trained on public automotive datasets and a new egocentric infrared
dataset collected in urban areas. Domain adaptation, efficiency and seg-
mentation accuracy are the focus of our study.

1 Introduction
Recent advances in deep learning have led to significant progress in fields like
computer vision and natural language processing, resulting in highly effective
algorithms. Today, deep networks are widely used in computer vision for tasks
like object recognition and image segmentation [3,11]. These successes are largely
due to the use of massive datasets and complex network models.

However, deploying these networks on small devices is challenging because
they need to be lightweight, efficient, and low in complexity to operate with lim-
ited resources. While some models, like MobileNets [7], offer efficient solutions,
their performance is often limited. Additionally, it is also common for many
networks to be available in different variants with varying model sizes [3, 8, 10].

In this article, we focus on the 2D semantic image segmentation task [2, 4].
Specifically, our goal is to develop a perception system for visually impaired in-
dividuals, enhancing their understanding of their surroundings through a sound-
based HCI interface. This system aims to increase their independence in activities
such as navigating outdoors. While this work focuses on semantic segmentation,
a crucial component of this challenging endeavor, ongoing and future research
will extend to obstacle detection and 3D scene analysis using depth data.

In our problem, we face two main problems related to domain adaptation.
The first one is that, due to the goal of allowing the system to work with limited
illuminations and to the data bandwidth limitations on the commercial device,
the acquired images are mainly built from infrared images, which differs from the
data available in traditional semantic segmentation datasets. Secondly, our ap-
plication required data acquired at breast levels and from walking people, which
contrasts with available datasets which are more oriented towards automotive
data shot from cars rather than from pedestrian areas.

Hence, to address our problem, we have followed the following strategy. We
investigate the use of several state-of-the-art deep networks known for their
performance and efficiency. We concentrated our efforts on fully convolutional
networks due to their ease of implementation on embedded devices and their
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Fig. 1: Our dataset. First column: infrared camera images collected by the device
and stacked horizontally. Second column: panoramic images resulting from cylindrical
projection and multi-band stitching. Third column: fine semantic segmentation anno-
tations (13 classes). Fourth column: coarse annotations. Annotations in white are not
used during training and evaluation.

efficiency with high-resolution images [8, 10]. To train these models, we first
leverage existing datasets (Cityscapes [5] and UrbanSyn [6]) to benchmark the
different models and pretrain them.

In a second step, a large dataset of domain data was collected by visually
impaired people while they were walking indoors and outdoors in urban settings.
This egocentric dataset was conceived for capturing typical situations that they
face when navigating outdoor (large variability in sidewalk diversity and geome-
try, street objects, etc). The dataset was then annotated relatively crudely with
different semantic categories that are pertinent to users and for the task, such
as ground, sidewalk, stairs, pedestrian crossing, etc.

2 Datasets
Three datasets are used to train and assess the network architectures. The first
two datasets (Cityscapes [5] and UrbanSyn [6]) are public datasets that we use to
assess and pretrain the networks. The last one is our dataset that has panoramic
images in urban settings, and is used to finetune the network for our task.
Cityscapes dataset [5]: it is an egocentric and driving-view image dataset with
high-resolution images (2048x1024 pixels). This dataset has two sets of images.
The first one has 5000 images with fine annotations, and the other has 20000
images with coarse ones. Each image has a semantic segmentation annotation
(masks) using 19 semantic classes, such as cars or buildings. Commonly, the fine
annotations are used for training and evaluation, while the coarse annotations
are for pretraining or extending the training set. Specifically, for fine annotations,
2975, 500, and 1525 images are used for training, validation, and testing.
UrbanSyn dataset [6]: it is a synthetic dataset of 7539 images with a resolution
of 2048×1024 that was created artificially following the Cityscapes format. Each
image has a precise semantic annotation using the Cityscapes classes. Also, it
has depth data and bounding box annotations. In this work, we only use the
color images and the semantic annotations to enlarge the pretraining data.
Our dataset: it corresponds to 3012 panoramic and infrared images extracted
from 51 videos recorded in the cities of Lausanne and Barcelona (around 60
frames were sampled and labeled per video). Some examples are shown in Fig. 1.

The images were collected using three Realsense cameras placed on a harness
that was worn by the user (around shoulders) during walks in some urban areas
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like metro stations, parks, and streets. These camera images (infrared images)
were then processed and stitched to obtain the panoramas (1254x848 pixels).
Specifically, cylindrical projection was applied to each camera image, and then
the resulting images were stitched using multiband blending (Laplacian pyra-
mid). The collected data also includes depth images; however, they are not used
in this work and will be part of the future work for 3D analysis.

The dataset images were annotated manually for 13 semantic categories rel-
evant to our task: road, sidewalk, pedestrian cross, building, stairs, car, bicycle,
person, dog, street object, vegetation, ceiling, and sky. Unlike other datasets,
pedestrian cross and stairs were annotated since they are important to in-
form users of safe and potential risky paths. Dogs were also labeled since some
users can be accompanied by guide dogs. Similar to [5], coarse annotations were
also computed by applying a morphological operator (erosion) to the manual-
annotated segmentation masks (fine annotations), see Fig. 1. They allow to mea-
sure the precision of the semantic segmentation results. The degree of erosion
was proportional to the size of the segments, being 3 pixels and 31 pixels the
minimum and maximum value, respectively.

For training and evaluation, the images were split according to video IDs
such that images from one video can only be in either the training set or the
evaluation set. Specifically, 41, 4, and 6 videos are used for training, validation,
and testing, which corresponds to 2340, 113, and 559 images, respectively.

3 Networks
Since the objective is to have an efficient segmentation system that can run in a
small processing device, we explore different network architectures in the state
of the art that have stood out by their good results and efficiency. Particularly,
we consider the Mask2Former [3] and DeepLabV3+ [2] networks, and two cus-
tomized networks based on EfficientNet [10] and ConvNeXt [8]. Mask2Former is
a Transformer network, whereas the rest are fully convolutional ones.
Mask2Former [3]: Masked-attention Mask Transformer (Mask2Former) is a
recent network architecture that can perform any image segmentation task. It
consists of a pixel encoder (backbone), a pixel decoder, and a transformer de-
coder. The backbone is the MaskFormer network [4], while the decoder is a
multi-scale deformable attention Transformer (MSDeformAttn [11]). The trans-
former decoder processes object queries and uses masked attention to extract
localized features by constraining cross-attention within predicted mask regions.
To deal with small objects, it uses multi-scale features from the pixel decoder
into the transformer decoder. The output segmentation predictions (masks) are
decoded from per-pixel embeddings with object queries. In our experiments, we
evaluate three Mask2Former models: the large, the small, and the tiny.
DeepLabV3+ [2]: this network extends DeepLabV3 [1] by adding an efficient
decoder to refine segmentation predictions. The encoder is the DeepLabV3 which
consists of stacks of convolutional layers followed by an Atrous Spatial Pyramid
Pooling (ASPP) to extract features at arbitrary resolution and capture larger
context in the input image. The decoder is simple and effective, comprising
convolutional layers, skip connections, and upsampling operations until the final



4 M. Villamizar et al.

prediction is obtained at 1/4 of the input image resolution. In this work, the final
prediction is upsampled (4x) by applying bilinear interpolation in order that it
gets the image resolution. We use the DeepLabV3 model with the ResNet101.
EfficientUNet: similar to DeepLabV3+, this architecture is a U-Net [9] consist-
ing of an encoder and a decoder with skip connections between them. As encoder,
we use EfficientNet [10] which provides a family of models (B0 to B7), each with
a particular combination of efficiency and accuracy. They were designed by uni-
formly scaling the models in all dimensions (depth, width, and resolution). We
selected the B1 and B5 models for our experiments. In the decoder, convolu-
tional layers and bilinear upsampling operations are used to compute features
at different resolutions. These features are added with features from the encoder
through skip connections. The output prediction has the input image resolution.
ConvUNeXt: it is similar to EfficientUNet, but we use ConvNeXt [8] as encoder
and use light ConvNeXt blocks in the decoder block. ConvNeXt was proposed
to modernize traditional convolutional networks (CNNs) by rethinking their de-
sign and have shown competitive performance with Transformers in terms of
accuracy and complexity. In this work, and to seek efficiency, we consider two
light ConvNeXt models in the encoder: the tiny and the small models. As in
DeepLabV3, we added an ASPP block in the bottleneck of the U-Net to capture
larger context in the input image, which is beneficial in segmentation tasks.

4 Experiments
Networks: for the encoder, we employ models pretrained in the ImageNet
dataset to train DeepLabV3+, EfficientUNet, and ConvUNeXt. For the decoder,
the convolutional blocks are trained from scratch by initiating their weights ran-
domly. In this paper, Mask2Former models are utilized for comparison. They are
not trained, and we use the available models pretrained on Cityscapes.
Training: all networks are trained using a batch size of 4 and for at least
30 epochs. Data augmentation is applied during training: random horizontal
flipping, Gaussian blurring, random photometric changes (contrast, brightness),
random image scaling (between 25% and 100%), and random cropping with a
size of half of the input image (e.g 627x424 pixels for our dataset). We use the
DeepLab loss that only backpropagates the errors associated to the pixels with
the top-k crossentropy loss (hard example mining).
Testing: during inference, we operate on the whole image resolution.
Evaluation metric: we use the standard mIoU (mean Intersection-over-Union).
Pretraining experiments: we train the networks (except Mask2Former) on
Cityscapes using the fine annotations (2975 images). Once trained, they are
evaluated in the validation set (500 images). Tab. 1 reports their semantic seg-
mentation performance using mIoU for fine and coarse ground-truth annotations.
The table also shows the rates for the pretrained Mask2Former models, the effi-
ciency (measured as frames per second in a RTX3090 GPU), and the number of
parameters of each model. We also report the results for when the networks are
trained with extra data, including Cityscapes data with coarse annotations, and
the UrbanSyn data. In that case, the networks are trained with 30000 images.
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Network # Parameters Extra data mIoU mIoU FPS
(fine) (coarse)

Mask2Former (large) 215 82.9 88.4 1.5
Mask2Former (small) 68 82.2 88.0 2.5
Mask2Former (tiny) 47 81.8 87.2 2.9
DeepLabV3+ 58 75.6 80.9 6.0

✓ 77.6 85.8 6.0
EfficientUNet (B5) 31 77.7 84.6 6.5

✓ 78.7 86.4 6.5
EfficientUNet (B1) 8 72.6 80.1 6.9

✓ 76.0 85.6 6.9
ConvUNeXt (small) 74 80.3 86.2 4.3

✓ 81.3 88.9 4.3
ConvUNeXt (tiny) 42 79.4 86.4 5.7

✓ 81.1 88.4 5.7

Table 1: Segmentation rates on the Cityscapes validation set. Parameters in Millions.

Network From scratch Pretrained
fine coarse fine coarse FPS

DeepLabV3+ 74.2 77.8 81.2 84.5 12.9
EfficientUNet (B5) 75.6 79.3 82.9 86.1 13.9
EfficientUNet (B1) 71.2 74.4 71.8 74.3 17.8
ConvUNeXt (small) 82.7 86.6 84.6 87.7 9.6
ConvUNeXt (tiny) 81.4 84.5 85.0 88.5 12.8

Table 2: Performance rates (mIoU) on the test set of our dataset.

In general, we see that using abundant data improves the accuracy of every
network, especially the rates for ground-truth coarse annotations since most of
the extended training data has coarse labels.

Mask2Former obtains the best performance using the large and small mod-
els, at the expense of the lowest speed and increased complexity which is not
suitable for our embedded device. The lightest model, EfficientUNet (B1), per-
forms on par with DeepLabV3+ despite being seven times smaller. Interestingly,
EfficientUNet (B5) performs better and faster than DeepLabV3+. ConvUNeXt
provides a good tradeoff between efficiency and accuracy. The performance of
the tiny and small variants is comparable, with the former being quicker and
smaller. Interestingly, the tiny model is competitive against the Mask2Former
tiny model while being almost two times faster. These networks were designed
to perform on par with Transformers [8], which is demonstrated here.

Finetuning experiments: the networks are finetuned in our dataset using
the models pretrained above, with the extra data, and with the same training
settings. In addition, we compare against training the networks from scratch (not
pretraining). The results are shown in Tab. 2. It is clear that using pretraining
greatly increases segmentation accuracy; this is most likely because the dataset
is challenging and small, making feature learning from scratch more difficult.

Similarly to the results on Cityscapes, ConvUNeXt achieves the best accu-
racy scores, followed by EfficientUNet (B5) and DeepLabV3+. Surprisingly, the
ConvUNeXt tiny model outperforms the small one when the networks are pre-
trained. Furthermore, note that the EfficientUNet (B1) obstains a low accuracy,
and does not benefit from pretraining. This is most likely due to the small size
of the network model, which struggles to acheive the task given its complexity.
Fig. 2 displays some qualitative example results of ConvUNeXt (tiny).
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Fig. 2: Some qualitative Semantic segmentation results

Conclusions: we investigated various state-of-the-art networks and carried out
experiments demonstrating the usefulness of pretraining as well as the efficiency
and effectiveness of carefully designed convolutional networks for semantic seg-
mentation. They can be used to assist visually impaired people.
Acknowledgment: This work was supported by Innosuisse, the Swiss innova-
tion agency, through the project: self-driving technology to guide blind pedestri-
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